教案的时间安排应灵活适应学生的学习进度和反馈,我们在评估教案的过程中,应关注其对学生学习动机的影响,优文档网小编今天就为您带来了小学方程的教案5篇,相信一定会对你有所帮助。

小学方程的教案篇1
教学内容:
教科书第p4~ p5例5~例6、 p5试一试、练一练p6~p7练习一第6~8题
教学目标:
1.使学生进一步理解并掌握等式的性质,即在等式两边同时乘或除以同一个不等于0的数,结果仍然是等式。
2.使学生掌握利用相应的性质解一步计算的方程。
教学重点:
使学生进一步理解并掌握等式的性质,即在等式两边同时乘或除以同一个不等于0的数,结果仍然是等式。
教学难点:
使学生掌握利用相应的性质解一步计算的方程。
教学过程:
一、复习等式的性质
1.前一节课我们学习了等式的性质,谁还记得?
2.在一个等式两边同时加上或减去同一个数,所得结果仍然是等式。那同学们猜想一下,如果在一个等式两边同时乘或除以同一个数(除以一个数时0除外),所得结果还会是等式吗?
3.生自由猜想,指名说说自己的理由。
4.那么,下面我们就通过学习来验证一下我们的`猜想。
二、教学例5
1.引导学生仔细观察p4例5图,并看图填空。
2.集体核对
3.通过这些图和算式,你有什么发现?
x=20 2x=202
3x 3x3=603
4.接下来,请大家在练习本上任意写一个等式。请你将这个等式两边同时乘同一个数,计算并观察一下,还是等式吗?再将这个等式两边同时除以同一个数,还是等式吗?能同时除以0吗?
5.通过刚才的活动,你又有什么发现?
6.引导学生初步总结等式的性质(关于乘除的)乘或除以0行吗?
7.等式性质二
等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。
8.p5试一试
(1)指名读题
(2)你是根据什么来填写的?
三、教学例6
1.出示p5例6教学挂图。
指名读题,同时要求学生仔细观察例6图
2.长方形的面积怎样计算?
3.根据题意怎样列出方程?你是怎么想的?板书:40x=960
4.在计算时,方程两边都要除以几?为什么?
小学方程的教案篇2
教学内容
解方程:教材p69例4、例5。
教学目标
1.巩固利用等式的性质解方程的知识,学会解ax±b=c与a(x±b)=c类型的方程。
2.进一步掌握解方程的书写格式和写法。
3.在学习过程中,进一步积累数学活动经验,感受方程的思想方法,发展初步的抽象思维能力。
教学重点
理解在解方程过程中,把一个式子看作一个整体。
教学难点
理解解方程的方法。
教学过程
一、导入新课
我们上节课学习了解方程,这节课我们来继续学习。
二、新课教学
1.教学例4。
师:(出示教材第69页例4情境图)你看到了什么?
生:有3盒铅笔和4只铅笔,一盒铅笔盒中有x支铅笔。
师:你能根据图列一个方程吗?
生:3x+4=40。
师:你是怎么想的?
生:一盒铅笔盒有x支铅笔,3盒铅笔盒就有3x支铅笔。据此,可列出方程。
师:说得好,你能解这个方程吗?
学生在尝试解方程时,可能会遇到困难,要让学生说一说自己的困惑。学生可能会疑惑:方程的左边是个二级运算不知识如何解。也有学生可能会想到,把3个未知的铅笔盒看作一部分,先求出这部分有多少支,再求一盒多少支。(如果没有,教师可提示学生这样思考。)
师:假如知道一盒铅笔盒有几支,要求一共有多少支铅笔,你会怎么算?
生:先算出3个铅笔盒一共多少支,再加上外面的4支。
师:在这里,我们也是先把3个铅笔盒的支数看成了一个整体,先求这部分有多少支。解方程时,也就是先把谁看成一个整体?我们可以先把“3x”看成一个整体。
让学生尝试继续解答,教师根据学生的回答,板书解题过程。也可以让学生同桌之间再说一说解方程的过程。
2.教学例5。
师:(出示教材第69页例5)你能够解这个方程吗?
生1:我们可以参照例4的方法,先把x-16看作一个整体。
学生解方程得x=20。
生2:我们也可以用运算定律来解。
师:2x-32=8运用了什么运算定律?
生:运用了乘法分配律。然后把2x看作一个整体。
学生解方程得x=20。
师:你的解法正确吗?你如何检验方程是否正确?
生:可以把方程的解代入方程中计算,看看方程左右两边是否相等。
三、巩固练习
教材第69页“做一做”第1、2题。
第1题的形式、内容都与例4基本相同。第2题的4个方程在两道例题的基础上略有变化,使学生学会举一反三。
这两道练习要让学生独立完成,教师可提醒学生解一题,代入检验一题,以促进检验习惯的养成。
四、课堂小结
1.在解较复杂的方程时,可以把一个式子看作一个整体来解。
2.在解方程时,可以运用运算定律来解。
五、布置作业
教材第71页“练习十五”第6、8、9.题。
小学方程的教案篇3
教学目标:
1、认识等式,以具体的实例引导学生通过自主的探索活动,初步理解等式的特征。
2、通过观察比较,使学生认识到含有未知数的等式是方程,感受等式与方程的联系与区别,体会方程是特殊的等式。
教学重点:
理解等式的性质,理解方程的意义。
教学难点:
利用等式性质和方程的意义列出方程。
教学准备:
多媒体课件
教学过程:
一、情景引入
出示天平。
知道这是什么吗?你知道它是按照什么原理制造的吗?
说说你的想法。
如果天平左边的物体重50克,右边的放多少克才能保持天平的平衡的呢?
二、教学新课
1、教学例1。
(1)出示例1图。
你会用等式表示天平两边物体的质量关系吗?把它写出来。
50+50=100 (板书)
说说你是怎样想的?
(2)指出等式的左边,等式的右边等概念。
等式有什么特征?(等式的左边和右边结果相等;等式用等号连接)
能说说什么样的式子叫做等式吗?(左右两边相等的式子叫做等式)
2、教学例2。
(1)出示例2图。
天平往哪一边下垂说明什么?(哪一边物体的质量多)
你能用式子表示天平两边物体的质量关系吗?
学生独立完成填写,集体汇报。
板书:x+50>100 x+50=150
x+50
如果让你把这四个式子分类,应分为几类?为什么?
指出:左右两边相等的式子就叫做等式,而这些等式与前面所看到的等式又有什么不同?(等式中含有未知数)
知道像x+50=100,x+x=100这样的等式叫什么吗?(方程)
说说什么是方程?你觉得这句话里哪两个词比较重要?(含有未知数、等式)
(2)讨论:等式与方程有什么关系?
小组讨论。
指出:方程一定是等式,但等式不一定是方程。
方程是特殊的.等式。他们的关系可以用集合圈表示。
3、教学“试一试”。
独立完成,完成后汇报方法。
让学生说一说,每题中的方程哪个更简洁一些?
指出:像500÷2=x,20-12=x虽然也是方程,但在列方程时应尽量避免这样x单独在等号左边或右边的方法。
4、完成“练一练。
(1)完成第1题。
独立完成判断后说说想法。
(2)完成第2题。
(3)完成第3题。
交流所列方程,说说你为什么这样列?你是怎么想的?
三、巩固练习
1、完成练习一第1题。
能说说每个线段表示的意思吗?方程怎样列呢?
小组中交流列式。
2、完成练习一第2题。
理解题意,说说数量关系是怎样的?
列出方程并交流。
3、完成练习一第3题。
四、课堂总结
通过学习,你有哪些收获?
板书设计:
方程
等式 50+50=100 x+50>100 x+50=150
方程 x+50
小学方程的教案篇4
教学目标
(1)使学生初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。
(2)初步理解等式的基本性质,能用等式的性质解简易方程。
(3)关注由具体到一般的抽象概括过程,培养学生初步的代数思想。
(4)重视良好学教学重、难点:
(1) “方程的解”和“解方程”之间的联系和区别。
(2)利用天平平衡的道理理解比较简单的方程的方法。
教学过程
一.揭示课题
师:(出示课件)老师在天平的左边放了一杯水,杯重100克,水重x克,一杯水重多少?
生:(100+x)克
师:在天平的右边放了多少砝码,天平保持平衡呢?(教师边讲边操作100克、200克、250克)
师:请你根据图意列一个方程。生:100+x=250(课件显示:100+x=250)
师:这个方程怎么解呢?就是我们今天要学
二.探究新知,理解归纳
(1)概念教学:认识“方程的解”和“解方程”的两个概念
师:(出示课件)那你猜一猜这个方程x的值是多少?并说出理由。
生1:我有办法,可以用250-100=150,所以x=150.
生2:我有办法,因为100+150=250,所以x=150
生3:老师我也有办法,我是这样想的,假如方程的两边同时减去100,就能得出x=150师:黎明同学的想法太棒了!我们一起探索验证一下。请看屏幕,怎样操作才使天平左边只剩x克水,而天平保持平衡。
生:我在天平的左边拿走一个重100克空杯子,在天平的右边拿走100克的砝码,天平保持平衡。
师:你能根据操作过程说出等式吗?
生:100+x-100=250-100
(课件显示:100+x-100=250-100)
师:这时天平表示未知数x的值是多少?生:x=150(课件显示:x=150)
师:是的,黎明同学的想法是正确的,方程左右两边同时减100,就能得出x=150。我们表扬他。把掌声送给他。
师:根据刚才的实验,我们来认识两个新的概念———“方程的解”和“解方程”。师:(课件显示x=150的)指着方程100+x=250说:“x=150是这个方程的解。(课件显示:方程的解)
师:100+x=250 100+x-100=250-100说:“这是求方程的解的过程,叫解方程。
师:在解方程的开头写上“解:”,表示解方程的全过程。(课件显示:解:)
师:同时还要注意“=”对齐。师:都认识了吗?请打开课本第57页将概念读一次,并标上重点字、词。
师:你们怎么理解这两个概念的? (学生独立思考,再在小组内交流。)
师:谁来说说你想法?
生1:“解方程”是指演算过程
生2:“方程的解”是指未知数的值,这个值有一个前提条件必须使这个方程左右两边相等。
师:“方程的解”和“解方程”的两个解有什么不同?
生:“方程的解”的解,它是一个数值。“解方程”的解,它是一个演变过程。
[设计意图:通过自主学精神。]
(2)教学例1。
师:要是老师出一个方程,你会求这个方程的解吗?
生:会。
师:请自学第58页的例1的有关内容。
[学生独立学师:(出示例1)左边有x个,右边有3个,一共用9个。根据图意列一个方程。
生:x+3=9(板书:x+3=9)
师:x+3=9这个方程怎么解?我们可以利用天平保持平衡的道理帮助理解,请看屏幕。师:怎样操作才使天平的左边只剩x,而天平保持平衡。
生:天平左右两边同时拿走3个球,使天平左边只剩x,天平保持平衡。(教师随着学生的回答演示课件)
师:根据操作过程说出等式?
生:x+3-3=9-3(板书:x+3-3=9-3)
师:这时天平表示x的值是多少?生:x=6(板书:x=6)
师:方程左右两边为什么同时减3?
生1:使方程左右两边只剩x。
生2:方程左右两边同时减3,使方程左边只剩x,方程左右两边相等。
师:“方程左右两边同时减3,使方程左边只剩x,方程左右两边相等。”就是解这个方程的方法。
师:这个方程会解。我们怎么知道x=6一定是这个方程的解呢?生:验算。
师:对了,验算方法是什么?
生:将x=6代入原方程,看方程的左边是否等于方程的右边。
(板书:验算:方程的左边=6+3=9方程的右边=9
方程的左边=方程的右边所以,x=6是方程的解。)
师:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的解方程:3x=18?
[学生独立思考,再在小组内交流。]
汇报交流,指生说,然后课件演示。
方程两边同时除以一个不等于0的数,左右两边仍然相等。
做一做:
身高问题
小明去年的身高+比去年长高的8cm=今年的身高
小明今年的身高-小明去年的身高=8cm
小明今年的身高-8cm=小明去年的身高
小红高165cm,比小华高10cm,小华高多少cm?
我们用桶接水接了30分钟水,一共接了1.8kg,每分钟接水多少克?
三、巩固应用
1、填空。
(1)使方程左右两边相等的( )叫做方程的解。
(2)求方程的解的过程叫做( )。
(3)比x多5的数是10。列方程为( )
(4)8与x的和是56。方程为( )
(5)比x少1.06的数是21.5。列方程为( )。
2、你能说出下列方程的解是多少吗?
x+19=21 x-24=15
5x=10 x÷2=4
3、用含有字母的式子表示下列数量关系。
(1).比x多3的数。
(2).x的1.5倍。
(3).每枝铅笔x元,买30枝铅笔需要多少钱?
(4).小明13岁,比小红小x岁,小红多少岁?
4、练小结:解含有加法方程的步骤。(口述过程)
四、拓展延伸。
1、挑战501—— 502
五年级参加科技小组的人数是34人,比参加文艺小组的人数的2倍少6人,参加文艺小组人数有多少人?(写出数量关系式,列方程解)
师:看来,解加法方程同学们掌握得很好,老师得提高一点难度,敢挑战吗?
生:敢。
师:谁愿意读读这个方程? [学生都争着读这个方程,可激烈了]
师:这是一个含有减法的方程,你能根据解加法方程的步骤,尝试完成。
(指名王欣同学到黑板板演,其他同学在单行纸完成) [学生试着解方程并进行口头验算]
2、集体交流、评价、明确方法。
师:王欣同学做对了吗?生:对。
师:方程左右两边为什么同时加几?
生:方程左右两边同时加6,使方程左边只剩2x,方程左右两边相等......(由板演
王欣同学面向大家回答)
3 、提炼升华
师:谁能说说解含有加法和减法的方程的步骤?(随着学生,课件显示全过程。)
生:解方程的步骤:
a)先写“解:”。
b)方程左右两边同时加或减一个相同的数,使方程左边只剩x,方程左右两边相等。
c)求出x的值。
d)验算。
4、全课小结,评价深化
通过今天的学以小组为单位自评或互评课堂表现,发扬优点、改正缺点。
对老师的表现进行评价。
[设计意图:教师始终把学生放在主体地位,为学生提供了一个自己去想去说,去回味知识掌握过程的舞台,这样将更有助于学生掌握正确的学总结失败原因,发扬成功经验,培养良好的学习习惯。]
[板书设计]解方程例1:书本图x+3=9验算:x-2=15解:x+3-3 =9-3方程左边= 6+3=9解:x-2+2=15+2 x=6方程右边= 9 x=17方程左边=方程右边所以,x=6是方程的解。
小学方程的教案篇5
一、设计理念:
随着学生学习知识的迁移,让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,既巩固了小学基础知识,又为初中教学打下坚实的基础。
二、教学目标:
知识与技能:让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,运用相关规律,熟练的进行解方程计算。
过程与方法:让学生通过体验移项解方程的历程,观察、比较,进而归纳出解各类方程的快捷方法,得出一些相关规律,培养学生观察,思考,对比,归纳的方法。
情感态度与价值观:运用“勾漏”双向四步教学法,适当创设教学情境,激发学生的学习兴趣。
三、教学重、难点:
教学重点:让学生在让学生在利用等式性质解方程的基础上学会运用移项的方法解方程,掌握各类解方程的一些规律,运用相关规律,熟练的进行解方程计算。
教学难点:让学生体验移项解方程的历程,观察、比较,进而归纳出解各类方程的快捷方法,得出一些相关规律,培养学生观察,思考,对比,归纳的方法。
四、教学方法:
“勾漏”双向四步教学法;观察法、比较法、归纳法。
五、教学准备:
教学课件
六、教学过程
(一)、勾人入境:
同学们,利用等式的性质我们学会了解方程,其实上,熟练后,我们可以不用写得那么麻烦,三言两语就可以轻松地解方程了啊!想学吗?
(二)、漏知互学:
我们先按运算符号把方程分成四大块:一、加法方程,二、乘法方程;三、减法方程;四、除法方程
先来看第一大块的加法方程
186+x=200
用等式的性质这样解:
186+x=200
解:x+186—186=200—186
x=14
熟练后可以这样解:
186+x=200
解:x=200—186
x=14
有什么规律呢?先看符号(+——--符号相反)再看数字(数字顺序也相反),那合起来说就是:加法方程,数符相反。有趣吗?
现在我们再看第二大块的乘法方程
36×x=108
用等式的性质这样解:
36×x=108
解:x×36÷36=108÷36
x=3
熟练后可以这样解:
36×x=108
解:x=108÷36
x=3
师:他们又有什么规律呢?(课件展示)哦真聪明!乘法方程与加法方程的规律一样,数字顺序和运算符号都相反了,所以我们把乘法方程与加法方程合在一起称为:乘加方程,数符相反。明白了吗?记住了吗?
现在我们再来看第三大块,减法方程:
x—36=12
用等式的性质这样解:
x—36=12
解:x—36+36=12+36
x=48
熟练后可以这样解:
x—36=12
解:x=12+36
x=48
那么它们又有什么规律呢?先看未知数x都在减号前,接下来的运算符号都用加法,那么是不是所有的减法方程都是用加法呢?别急,请看:
108—x=60
用等式的性质可以这样解:
108—x=60
解:108—x+x=60+x
108 =60+x
60+x =108
x+60-60 =108-60
x=48
熟练后可以这样解:
108—x=60
解:x=108—60
x=48
同学们,比较一下,这两题减法方程与上面两题有什么不同呢?对,未知数x都在减号后面,运算符号都是用减法,那么我们就可以把这两张种减法方程合并起来说:减法方程,前加后减。未知数x在减号前用加法,未知数x在减号后,用减法。
接下来我们再来学习第四块,除法方程:
x÷12=5
用等式的性质可以这样解:
x÷12=5
解:x÷12×12=5×12
x=60
熟练后可以这样解:
x÷12=5
解:x=5×12
x=60
同学们,你发现了什么?对,眼睛真厉害!未知数x在除号前,解完这道题,谁发现,有没有似曾相识的感觉:与减法一样
1、未知数x在除号前面
2、都用乘法
3、数字没有相反。怎么办,对,先算完另外一种情况(x在除号后的)再说,那么请开始吧。
48÷x=3
用等式的性质可以这样解:熟练后可以这样解:
48÷x=3 48÷x=3
解:48÷x×x=3×x解:x=48÷3
48=3×x x=16
3×x=48
x=48÷3
x=16
仔细观察比较,你发现了什么?解除法方程的规律你找到了吗?1、未知数x在除号后面,2、都用除法,3、数字没有相反。以上说明在除号前后的计算方法不一样,那么它的规律要根据x在除号前后来判断,x在除号前用乘法,x在除号后用除法,从而得出他的规律是除法方程,前乘后除,它和减法有类似感。
(三)、流程对测:
小组内各出加减乘除的方程各一条,然后交换计算,看谁算得又快又准确。
小组开始探究,教师巡逻指导
(四)、结课拓展:请同学们说说这节课你学到了什么?
小学方程的教案5篇相关文章:
 
                             
                             
                             
                            